30 |
(cursor) |
63 |
? (question mark) |
31 |
(edge character) |
64 |
@ (at sign) |
32 |
(space) |
65 |
A |
33 |
! (exclamation point) |
66 |
B |
34 |
" (quote) |
67 |
C |
35 |
# (number or pound sign) |
68 |
D |
36 |
$ (dollar) |
69 |
E |
37 |
% (percent) |
70 |
F |
38 |
& (ampersand) |
71 |
G |
39 |
‘ (apostrophe) |
72 |
H |
40 |
( (open parenthesis) |
73 |
I |
41 |
) (close parenthesis) |
74 |
J |
42 |
* (asterisk) |
75 |
K |
43 |
+ (plus) |
76 |
L |
44 |
, (comma) |
77 |
M |
45 |
- (minus) |
78 |
N |
46 |
. (period) |
79 |
O |
47 |
/ (slash) |
80 |
P |
48 |
0 |
81 |
Q |
49 |
1 |
82 |
R |
50 |
2 |
83 |
S |
51 |
3 |
84 |
T |
52 |
4 |
85 |
U |
53 |
5 |
86 |
V |
54 |
6 |
87 |
W |
55 |
7 |
88 |
X |
56 |
8 |
89 |
Y |
57 |
9 |
90 |
Z |
58 |
: (colon) |
91 |
[ (open bracket) |
59 |
; (semicolon) |
92 |
\ (reverse slash) |
60 |
< (less than) |
93 |
] (close bracket) |
61 |
= (equals) |
94 |
^ (exponentiation) |
62 |
> (greater than) |
95 |
_ (underline) |
The following key presses may also be detected by CALL KEY
1 |
SHIFT A (AID) |
3 |
SHIFT F (DEL) |
4 |
SHIFT G (INS) |
6 |
SHIFT R (REDO) |
7 |
SHIFT T (ERASE) |
8 |
SHIFT S (LEFT ARROW) |
9 |
SHIFT D (RIGHT ARROW) |
10 |
SHIFT X (DOWN ARROW) |
11 |
SHIFT E (UP ARROW) |
12 |
SHIFT V (CMD) |
13 |
ENTER |
14 |
SHIFT W (BEGIN) |
15 |
SHIFT Z (BACK) |
|
|
Function |
TI Extended BASIC Statement |
Secant |
DEF SEC(X)=1/COS(X) |
Cosecant |
DEF CSC(X)=1/SIN(X) |
Cotangent |
DEF COT(X)=1/TAN(X) |
Inverse Sine |
DEF ARCSIN(X)=ATN(X/SQR(1-X*X)) |
Inverse Cosine |
DEF ARCCOS(X)=-ATN(X/SQR(1-X*X))+PI/2 |
Inverse Secant |
DEF ARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*PI/2 |
Inverse Cosecant |
DEF ARCCSC(X)=ATN(1/SQR(X*X-1))+(SGN(X)-1)*PI/2 |
Inverse Cotangent |
DEF ARCCOT(X)=PI/2-ATN(X) or =PI/2+ATN(-X) |
Hyperbolic Sine |
DEF SINH(X)=(EXP(X)-EXP(-X))/2 |
Hyperbolic Cosine |
DEF COSH(X)=(EXP(X)+EXP(-X))/2 |
Hyperbolic Tangent |
DEF TANH(X)=-2*EXP(-X)/(EXP(X)+EXP(-X))+1 |
Hyperbolic Secant |
DEF SECH=2/(EXP(X)+EXP(-X)) |
Hyperbolic Cosecant |
DEF CSCH=2/(EXP(X)-EXF(-X)) |
Hyperbolic Cotangent |
DEF COTH(X)=2*EXP(-X)/(EXP(X)-EXP(-X))+1 |
Inverse Hyperbolic Sine |
DEF ARCSINH(X)=LOG(X+SQR(X*X+1)) |
Inverse Hyperbolic Cosine |
DEF ARCCOSH(X)=LOG(X+SQR(X*X-1)) |
Inverse Hyperbolic Tangent |
DEF ARCTANH(X)=LOG((1+X)/(1-X))/2 |
Inverse Hyperbolic Secant |
DEF ARCSECH(X)=LOG((1+SQR(1-X*X))/X) |
Inverse Hyperbolic Cosecant |
DEF ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/X) |
Inverse Hyperbolic Cotangent |
DEF ARCCOTH(X)=LOG((X+1)/(X-1))/2 |
Color |
Code |
Color |
Code |
Transparent |
1 |
Medium Red |
9 |
Black |
2 |
Light Red |
10 |
Medium Green |
3 |
Dark Yellow |
11 |
Light Green |
4 |
Light Yellow |
12 |
Dark Blue |
5 |
Dark Green |
13 |
Light Blue |
6 |
Magenta |
14 |
Dark Red |
7 |
Gray |
15 |
Cyan |
8 |
White |
16 |
The following table gives the frequencies (rounded to integers) of four octaves of the tempered scale (one half step between notes). While this list does not represent the entire range of tones that the computer can produce, it can be helpful for programming music. |
Frequency |
Note |
Frequency |
Note |
110 |
A |
440 |
A (Above Middle C) |
117 |
A# |
466 |
A# |
123 |
B |
494 |
B |
131 |
C |
523 |
C (High C) |
139 |
C# |
554 |
C# |
147 |
D |
587 |
D |
156 |
D# |
622 |
D# |
165 |
E |
659 |
E |
175 |
F |
698 |
F |
185 |
F# |
740 |
F# |
196 |
G |
784 |
G |
208 |
G# |
831 |
G# |
220 |
A |
880 |
A (Above High C) |
233 |
A# |
932 |
A# |
247 |
B |
988 |
B |
262 |
C (Middle C) |
1047 |
C |
277 |
C# |
1109 |
C# |
294 |
D |
1175 |
D |
311 |
D# |
1245 |
D# |
330 |
E |
1319 |
E |
349 |
F |
1397 |
F |
370 |
F# |
1480 |
F# |
392 |
G |
1568 |
G |
415 |
G# |
1661 |
G# |
440 |
A (Above Middle C) |
1760 |
A |