oy Talk 1s Cheap

A Low-Cost RS232 Interface
Through the TI1-99/4A Joystick Port

Caveat Joytalker

This article is not for the beginner. If you have electronic con-
struction experience {and some skill in soldering) you can successful-
Iy complete the Joytalk system. The hardware required approximately
8 hours to fabricate fincluding time to gather the parts) in the 99'er
lab. The cost for all the parts was under $40. Remember. a mistake
in hardware construction is more costly than in seftware construc-
tion—it cannot be corrected with just a few keystrokes!

ly comes a time to communicate your results to the out-

side world, For personal computers, the RS232 serial in-
terface has become the standard link allowing you to com-
municate to a printer, a plotter, or other peripheral. This first
article will describe the hardware required to implement the
RS232 output function through the joystick port of the
TI-99/4A. (Software will be covered next month.) In this way,
users who don’t have a peripheral expansion system can out-
put to a printer or other serial device using only a Mini
Memory cartridge and some low-cost hardware. The soft-
ware/hardware combination allows the setting of baud rate
(110-19.2K), stop bits, parity, and auto carriage return/line
feed. The worst baud rate error occurs at 19.2K baud, and
is less than 0.2%. A provision is also included to add baud
rates which are not preprogrammed,

To better understand the hardware and software design
tasks, a definition of “RS232" is needed. RS232 is a serial
communications standard which defines both electrical
specifications and a data transfer protocol. Its electrical
characteristics include such things as voltage and loading
levels. The relationship between these logic and voltage levels
is of interest to us. Notice that the electrical levels are inverted
from the logic levels {logic 0= +V and logic 1=-V) for
RS5232.

A transfer protocol is needed for proper flow of data. For
the RS232, this protocol specifies the serial data format, as
well as the method of handshaking. The handshaking in this

I n the process of computer programming, there eventual-

By Paul Urbanus
6302 Elgin #278
Lubbock, TX 79413

case involves checking the DATA TERMINAL READY signal
to ensure that the remote device (i.e., the printer) is ready
to accept data. The serial data format is shown in Figure 1,
Notice that there are four distinct IEluieo:es which are put
together to form the actual data which is transmitted. In this
case, an ASCIl “A” which occupies seven bits is bein
transmitted. There are also 3 control bits, which are requir
both to mark the beginning (START BIT) and end (STOP BIT)
of a character, and to perform limited error checking (PARI-
TY BIT). Thus 10 bits are actually transmitted (7 character bits
+ 3 control bits), For every character transferred, 3 extra bits
have been added to “‘control’* the transfer, These control bits
are completely transparent to an RS232 user, who merely
sends the 7-bit character code to an output subroutine, at
which point the control bits are added. Conversely, the
receiving device strips off the 3 control bits and uses only
the 7-bit character. In the time between transmission of
characters. the output logic level is set to 1 (negative R5232
level).

The Hardware

Beiore the hardware design is started, the /O structure of ,
the joystick port must be determined. In the 99/4A, the
keyboard and joysticks are mapped into an 8 by 8 matrix.
The matrix column select lines are active Jow, and are driven
by an 8-output open-coflector decoder. This decoder is con-
trolled by three lines irom the system VO chip (TMS9901).
Six of the column selects scan the keyboard. The remaining
two are buffered and brought out to the joystick port to select
player 1 or player 2 input (or neither). There are five input
lines from the joystick input (UP, DOWN, LEFT, RIGHT, and
FIRE}, but only ane joystick select line may be active at a time.
Two pins on the joystick port have no internal connection.
The ahsence of power or ground on the joystick port poses
a problem. To get around this, ground and + 12V must be
stolen from the video output connector where they are pro-
vided to power the RF modulator.

Given the joystick port structure and available power, im-

START DATA BITS(7)} P ABFI"I'TY STOP
BIT (Shown for ASCII ‘A’ = >41) (Odd Par) BIT
JS1 f——‘_ ¥ A Y o~ 7—‘ i]
v I | 1 | T 1 |
0| 1 0} 0] o | o} 0o [1! 11 11 INACTIVE
oV — | | | i 1 i |
logic level r
+12v
RS232
OUTPUT - 8v
{PIN 3) .
RS232 TIMING Figure 1
82 99’er Home Computer Magazine June 1983

Top photo: Joylalk, installed between a printer and the Home Computer.
Bottom photo: The completed Joytalk interface, minus the case.

E}emkenting the RS232 output function requires three basic
ocks:

1. A negative supply voltaEe to generate the negative voltage
levels as required by the RS232 standard.

2. Circuitry to translate the joystick select level to R$232 com-
patible levels. It is necessary to maintain the R$232 serial
output at an inactive level when the joystick select is in-
active. This requires that the joystick select level be in-
verted; otherwise the remote device will see continuous
start bits. Since R5232 levels are bipolar (see Figure 1), the
inverter stage should have a bipolar output.

3. Finally, some circuitry is needed to translate the printer
busy signal to a level which moves between Hi-Z and
ground, and is also compatible with the scan matrix levels.
If the ““device busy” is asserted when the keyboard is be-
ing scanned, improper results will be returned. Therefore,
the busy signal needs to be gated onto the scan matrix only
when it needs to be checked. The remaining joystick select
is used for gating control.

The completed hardware design is shown in Figure 4. A
look at this schematic reveals the details of the design. The
negative voltage supply is generated using a charge-and-
dump technique. At the heart of the design is a 555 timer
(IC1) free running at approximately 30 KHz. On the positive
half of each output cycle, ““bucket’’ capacitor C3 is charged
through D1. When the output transitions to ground, D1 turns
off and D2 turns on, allowing C3 to “‘dump’ part of its charge
into C4. C4 holds the negative voltage level while C3 is
reqharEinE.

For the R$232 output, both level translation and inversion
must be performed. A common-emitter circuit consisting of
Q3, D3, R3, R4, R5 forms an inverter with bipolar output
levels. When the joystick select (JS1) is inactive (+4v), Q3
should be off, and the RS232 output will be negative (Figure
1). An active (OV) joystick select should turn on D3 and Q3,
raising the RS232 output voltage to + 11, allowing for voltage
of approximately 2 volts. This is the desired threshold voltage,

because it is midway between the joystick output levels. R4
protects Q3 from output shorts, while R3 limits zener current.
Finally, Q1, Q2, D4, R1, and R2 buffer and gate the busy
signal. Q2 performs the gating function by keeping the col-
lector of Q1 in the high impedance state if the)52 output
is inactive (high). When JS2 is active (low =0V), Q2 turns
ofi—allowing the busy input level to ground. The DOWN
joystick level is inverted from the actual RS232 level.

Construction Notes ;

All of the wire needed to construct the project was obtained
from one six-foot cable (5-pin DIN to 5-pin DIN) purchased
at Radio Shack (Cat. number 42-2151). Starting at one end
of the cable, the connector with about 9 inches of cable was
cut off to be used for connector |2 as shown in Figure 2 (plugs
into the T1-99/4A monitor jack). From the same end of the
cable, a 10-inch section of cable was cut off for use with the
9-pin D-type connector (plugs into the joystick port). At each
of the three ends, about an inch of the thick outside cable
jacket was carefully cut away from the wires inside. There
are four wires inside—red, white, black, and yellow. Each
wire is wrapped in fine copper wire strands. Unwind the
strands from each wire and cut oif all of them except for ene
set which should be carefully twisted into a fifth wire. To ob-
tain wire for hooking up the components in the box, cut
another 20~ section of cable. Carefully cut away the entire
outside grey jacket from this section, unwind the copper
strands from the four colored wires, and discard the strands.

1. +12V DC

2. VIDEO

3. SHIELD

4, GROUND (+)
5. SOUND

Figure 2

Step two in the construction phase consists of cutting the
holes on the back plate of the Radio Shack case (Cat. number
270-218). Follow the hole-drilling template in Figure 7 (see
p. 71). Drill very gently so the pfastic plate does not crack.
Using 4-40 screws and nuts, fasten the connectors)3 and J4
into their respective holes. Be sure to place the connectors
through the mounting holes from the outside of the plate.
Then pass the prepared cable end of the 5-pin DIN male con-
nector through the plate marked for)2 in Figure 7. Lay the
panel aside for now and prepare the J1 connector cable
assembly. Connect the wires as shown in Figure 3. (Note that
even though only three wires are required, all five connec-
tions are made: this adds strength to the cable and does not
affect the operation). Pass the free end of the J1 cable through
the hole for the |1 cable in the rear panel. The rear panel
is now ready to be attached to the circuit board.

2. PRINTER READY SIGNAL (DTR)
ENABLE
7. DATA TO PRINTER (RD)
8. PRINTER READY SIGNAL {DTR) .
1, 36, 9. (NOT USED) :

A Fig"fé_ 3

)
03
O@__/L
R1 03
o)
Q®
O
R7 | 26
[SYe)
RS o)
80
\.4
J4
R4

Figure 4

PARTS LIST FOR JOYTALK

RADIO
SCHEMATIC SHACK
SYMBOL Q1Y PART NO. DESCRIPTION
J 1 276-1538 D-Subminiature female 9-position connector
1 276-1539 9-position D-Subminiature connector hood for above
12 1 422151 6-foot 5-pin to 5-pin DIN cable (use one end)
13 1 274-005 5-pin chassis socket DIN type
14 1 276-1548 D-Subminiature female 25-position connector
1C1 | 276-1723 Integrated Circuit Timer (NE555)
Q1, Q2 2 276-2016 NPN transistor (2N3904)
Q3 1 276-2034 PNP transistor (2N3906)
D1. D2, D4 3 276-1620 switching diode (IN914)
D3 1 276-562 9.1V zener diode (1N4739)
Cl 1 2721016 100 uF/35v electrolytic capacitor
C3, C4 3 272-1015 47 uF/35v electrolytic capacitor
C2, C5, Co 3 272135 0.1 uF disk capacitors
R1, R2
R4, R5, R6
R7, R8 7 271-1328 3.3K ohm, 1/4 watt resistor
R3 1 271-1317 470 ohm, 1/4 watt resistor
1 270-218 Deluxe Plastic Enclosure (2 1/8” x5” x5 1/4")
1 276-1995 8-pin low profile socket (for NE555 IC)
1 276-162 IC-LSI Perfboard (for-mounting circuit parts)
4 64-3011 4-40 x 1/4" steel round head machine screws
4 64-3018 4-40 steel hex machine screw nuts
(optional) 1 64-2801

Science Fair Electronic Tool Set (includes 30.watt soldering iron, needle-
nosed pliers, wire cutters, scréwdrivers, etc.) Consinued

JoyTalk is Cheap

PART Il: SOFTWARE FOR THE RS232 INTERFACE
THROUGH THE TI-99/4A JOYSTICK PORT

This is the second part of a series on converting the joystick
port of the TI-99/4A into a low-cost printer interface. The last
article (June, 1983) presented construction plans for the hard-
ware required.

t this point in the project, you’ve built the hardware—all
you need is software to complete the system. The source

code for the controlling Assembly Language program,

Listing 1, is intended to run in Mini Memory. Most Mini Memory
owners have limited systems, so the program has been designed
to load with an absolute origin at the initial assembly load point
in the Mini Memory cartridge (>7118). Listing 2 is the object
{(machine) code, which you can enter using EASYBUG. (Be sure
to re-initialize the Mini Memory before entering any code.) After
you've entered all the code, add the program names and entry
addresses to the REF/DEF table starting at address >7FF0. The
name and address data is given at the end of the program listing.
You also have to set the RAM pointers starting at location >701C
}n Mini Memory to the values shown at the end of the assembly
isting.

The Software

Because speed is essential for this output operation, the con-
trolling software program is in TMS9900 Assembly Language.
This program prints a string passed to it from a CALL LINK state-
ment in a TI BASIC program. The main program loop is shown
in Listing 1, Sections K, L, M and N. This program uses registers
in the faster console CPU. RAM. To preserve the BASIC environ-
ment, you must save the data in this register area into a tem-
porary buffer. (Before control returns to the BASIC program, this
memory must be restored.) Once the BASIC environment has
been saved, the program gets the string from BASIC and stores
it in a buffer, using the STRREF utility located in the Mini Memory
cartridge. The program then calculates the number of control
bits. At this point, one character from the string is removed from
the string buffer and has start, stop, and parity control bits add-
ed. This character—now a piece of data in its final form—is. sent
to the subroutine that performs the actual character transmis-
sion, If the buffer is empty when the next character is requested,
the BASIC register data is rolled back in, and control returns
to BASIC.

The character transmit subroutine, shown in Sections HH, Il
and J), performs several tasks. It must check the device busy

By Paul Urbanus
6302 Elgin #278
Lubbock, TX 79413

signal before the start of a character transmission. The CRU
(Communications Register Unit) of the TMS9900 makes this
check and sets the joystick select levels as well. If the device
is continuously busy, the keyboard is scanned for the BREAK
command in Tl BASIC—[FCTN] [4]—about 3 times a second.
If the break keys are pressed, BASIC register data is rolled back
in, and control returns to BASIC. This is consistent with the
operation of the Tl RS$232 peripheral. If the device is ready (not
busy), the baud counter is loaded. The current bit to output is
checked, and pin 7 of J1 is set to the proper level with a set/reset
bit instruction. After a delay equal to the time necessary to
transmit one bit, a check is made to see if all bits have been
transmitted. If not, the baud counter is reloaded, and the pro-
cess starts over again. If all bits have been output, control returns
to the main Assembly Language routine.

Using Joytalk

Now that you have the hardware built and the software ready,
the next step is to try it out, First, open the Joytalk case so voltage
measurements can be made, disconnect the monitor/modulator
cable from the computer, and connect the 5-pin plug from the
Joytalk into the computer video output jack. Then plug the
monitor/modulator cable into Joytalk’s 5-pin DIN jack. Turn on
the monitor, then the computer. Using a voltmeter, check for
the negative voltage supply at the minus side of capacitor C4.
Then check for the positive 12 volt supply at IC1 pin 5.

If the computer is not working normally with Joytalk plugged
in, or one of the voltages is not present, recheck your wiring.
If the wiring is correct, check the polarity of D1, D2, C3, and
C4. Also check that the correct transistor connections were
made. Once everything is working properly, plug in the R5232
connector from your Frinter to Joytalk’s RS232 connector J4.

To test your Joytalk interface, you'll call two Assembly

‘Language programs from Tl BASIC. The first of these sets up the

RS232 parameters. These parameters include: baud rate (110
to 19200), stop bits (1 or 2), parity (space, mark, even, odd or
none), suppression of automatic carriage return/line feed, sup-
pression of line feed only, and number of data bits (7 or 8). Figure
1 shows how to calculate the number which specifies the desired
parameter. (The example given calculates the parameter value
for 1200 baud, 1 stop bit, odd parity and 7 data bits.) Once
you've calculated this number, it is passed to the parameter-
setting subroutine by the following Tl BASIC statement:

CALL LINK("JSET”",numeric expression or variable)

PARAMETER

VALUE ADD VALUE
BAUD RATE
110 0
150 1
300 2
600 3
1200 4 4
2400 5
4800 6
9600 7
19200 8
USERI 9
USER2 10
USER7 15
DATA BITS
7 0 0
8 16
PARITY
SPACE 0
MARK 32
EVEN 64
ODD 96 9%
NONE 128
STOP BITS
ONE 0 0
TWO 256
AUTO CARR RET
ENABLED 0 0
DISABLED 512 .
AUTO LINE FEED :
ENABLED 0 . 0
DISABLED 1024
TOTAL 100

FIG. 1| PARAMETER VALUE CALCULATION:
1200 BAUD, 1 DATA BIT, ODD PARITY, 1 STOP BIT,
AUTO CR&LF

The second subroutine you call from TI BASIC is a string out-
put routine. It outputs through the joystick port the contents of
the string passed to it by Tl BASIC. The software will add and
send out carriage returns and line feeds if you set the proper
parameters (enable carriage returns and line feeds). The format
of the Tl BASIC statement for string output is

CALL LINK("JOUT" string expression or variable)

The following short program tests the Joytalk interface. This
test uses the following parameters: 7 bits, odd parity, 1200 baud,
:‘ stop bit. Other combinations of parameters could be used,

owever,

100 REM 7 DATA BITS 1 STOP BIT ODD PARITY 1200 BAUD
110 CALL LINK(*JSET"*,100)

120 INPUT A$

130 REM OUTPUT STRING TO JOYSTICK RS232

140 CALL LINK(“JOUT",A%)

150 GOTO 120

All calls to the Joytalk software must use the CALL LINK state-
ment. You cannot access the Joytalk software through the TI
BASIC PRINT statement because no other software entry points
are provided.

User-Defined Baud Rates

Although all the standard baud rates are available with the
Joytalk program, provisions are included to allow you to pro-
gram your own baud rates. To calculate the new baud counter
value, first calculate the time (microseconds) of one data bit.
This time is eclual to 1,000,000/(baud rate). Using this time
}BTIMIE}, calculate two numbers (X, Y) using the following
ormuia:

BTIME = 41.33 + 9.33*(X) + 0.667(Y)

with 0<X <4096 and 0< Y < 15. After you've calculated X and
Y, join them to form one 16-bit word with the following formula:

BAUD TABLE VALUE = X + Y*4096

You need to enter new values into the baud rate table begin-
ning at USERBD (> 7404). Each user will take one 16-bit word.
USER1 will occupy the word beginning at >7404; USER2 will
occupy the word >7406, and so on. To implement these USER
baud rates, merely incorporate the appropriate value from Figure
1 when calculating the RS232 parameter.

Comments

Well, you now have a low-cost serial interface which allows
you to talk to the outside world through Tl BASIC—or Assembly
Language if you modify the program. And you still have about
3Kl:?f mu;ed RAM in the Mini Memory cartridge just waiting,
to be filled . . .

In the previous section of Joytalk (June 1983), the
schematic diagram on page 65 (Fig 4.) had some com-
ponents inadvertently switched. Debugs, on page 76 in this
issue, contains a corrected diagram.

Listing 1

TITL "JOYSTICK RS232°
%
k] RS5232 DUTPUT THRU JOYSTICK
3
3 BY PAUL URBANUS
9
X%x SYSTEM EQUATES
x
PAD, EQU >B8300 START OF FAST 16 BIT CPU RAM
FAC EGU PAD+>4A FLOATING ACCUMLATOR
KUNIT EQU PAD+>74 KEYBODARD # TO BE SCANNED
KCODE EQU PAD+>73 KEYCODE IS RETURMED
STATUS EQU PAD+>7C GPL/SYSTEM STATUS FLAGS
GPLWS EQU PAD+2>E@ SYSTEM WORKSFPACE

FASTWS EQU FPAD
x

3%k%x BASIC UTILITIES IN MINI MEMORY ROM
E §

SOFT 232 WORKSPACE AT START OF RAM

NUMREF EQU >&044 £ UTILITY VECTORS
STRREF EQU >&04C % FOR ROUTINES
AMLLNE EQU >&01C x LOCATED IN
ERR EQU >&5050 % MINI MEMORY ROM
x
AORG >7118 START OF AVAILABLE MINI MEMORY RAM
]
EVEN

x
*#%% MISCELLANEDOUS MASKS AND DATA EQUATES
x

STPSTS DATA >0100 A STOF BITS MASK
PARMK1 DATA >00B0 * PARITY
PARMKZ DATA >0040 * HMASK
PARHMKE DATA 0020 * BITS

NUMBER OF DATA BITS MASK

BAUD TABLE INDEX MASK

AUTO LIME FEED MASK

AUTO CARRIABE RETURN MASK
DEFAULT PARITY BIT POSITION
START BIT MASK

STOF BIT MASK

USED IN PARITY SETTING ROUTINE

GTYMSK DATA >0010
BAUDMK DATA >000F
LFMASK DATA >0200
CRHASK DATA >0400
PARBIT DATA 0100
STRMSK DATA >0001
STPMSK DATA >0700
Heo®1 DATA >eeal
Hoe BYTE 500
HFF BYTE >FF
3

k3 RAM BUFFERS AND RAM VARIABLES
]

BSCBUF BSS 32

4

STRBUF BSS 256

: 3

STATRS DATA >0042 B
BSCRET BSS 2

x

b 4

b33 333353533383 33¢335 8338338333838 3 3363383232333 33282441;

ROLLOUT MEMORY FOR FAST RAM
INPUT DATA BUFFER

RS232 PARAMETER WORD
BASIC RETURN ADDR SAVE LOC-

CRU INIT SUBR
CALLED BY: BL @&SETUP
REG USE: R1,R12
SET R12 CRU BASE TO POINT TO SCAN MATRIX DECODER
SET SCAN DECODER TO SELECT JOYSTICK Z(J5Z2-=0V)
THIS ACTION BATES BUSY ONTO THE DOWN INPUT OF THE
JOYSTICK INPUT BUSS.

EEEAEEER R R ER R RA KRR R EAEA SRR XA AR A XX EA R R L AR ERRAE

L N O NN N NN

L4 3

S i 06 0 36 6 00 % W W WKW

ouT

R2 = TEMF,SCRATCH SHIFT

R3 = BAUD COUNTER (LODOFP PERMANENT)

R4 = LDOP COUNTER VARIABLE (BITCNT)

RS = TEMF VARIABLE FOR BITLOOP

R& = PERMANENT BIT COUNT

R7 = BUFFER FDINTER

RB = BUFFER LENGTH

R? = 3RD LEVEL (INNERMOST) SUBROUTINE LINK

Ri@= 2ND LEVEL SUBROUTINE LINK
Ril= 15T LEVEL (OUTERMOST)SUBROUTINE LINK

PSRN N RN R R NN NIRRT NI ERENTRLAERRAEL X

EOU @

LIMI © K
MOV R11,BBSCRET

BL BBETSTR

BL BSAVEIT

MOV R7,EBFASTWS+14
MOV RB, 8FASTWS+16

SAVE LINK TO BASIC

GET THE BASIC STRING
SAVE FAST RAM CONTENTS
PASS BUFFER POINTER..
«««AND BUFFER LENGTH

LWPI FASTWS GET READY TO B0 FASTER!!!
BL BBITCNT FIND NUMBER OF BITS TO X-MIT
BL ABSETUP SET UP JOYSTICK MUX

FETCHZ EQU s

RET2

BRKRET EQU ¢

LB A R R N N N

ix%s
E]

MOVB =R7+,R1 L GET NEXT CHAR FROM BUFFER

DEC R8 ADJUST REMAINING CHAR COUNT
JLT RET2

BL ADUTCHR ADJUST & OUTPUT ONE CHAR

JMP FETCH2 «=«AND LOOP IN NOT END OF STR.
EQU =

BL BCKAUTOD M CHECK AUTOMATIC OPTIONS

RETURN ENTRY IF BREAK KEY DOWN
TEMP REBS TO RESTORE FAST RAM
RESTORE DATA FOR BASIC

MOV @&BSCRET,R11 RESTORE CALLER ADDRESS...

MOVE aHee,&STATUS CLEAR ERROR IN CASE OF BREAK
RT =+« AND RETURN

LWPI STRBUF N
BL BRESTOR

FEEAREER RN SRR RN RAEEERERTARNEATLEXEREA TR EAXAEAERERERERE

DATA OUTPUT ROUTINE
CALLED BY: BL @&ODUTCHR
THIS ROUTINE DOES SEVERAL THINGS:
1. ADDS CONTROL BITS(START/STOP/PARITY) TO DATA

2. BETS CURRENT BAUD RATE VALLUE
3. OUTPUTS THE CHARACTER

IEERERREREIXAEREARARAETTATREARREARIRARNENEREREAERERERRASE

OUTCHR EQU =

KX
x
CRLF

SAVE SUBROUTINE LINK

RIGHT ADJUST OUTFUT BYTE
BET UP START, STOP, & PARITY
BITS IN DATA BYTE

MOV R11,R10 0
SRL R1,8
BL @PARSET

BL BGETED P GET BAUD RATE AND SHIFT COUNT
MOV R&,RS COPY # BITS FROM PERMANENT REG
BL BSENDIT TRANSMIT THE DATA

B tRi0 RETURN TD CALLER

FEASAREEREE RSN IR SRR SR EA SR SRR ERAEREITRERTRTAERE
AUTOMATIC CARRIAGE RETURN & LINE FEED
CALLED BY: BL @CKAUTO

THIS ROUTINE CHECKS THE PARAMETER WORD AND SENDS
A CARRIABE RETURN OR LINE FEED IF ENABLED TO DO SO

EERERRERASERR IR RN AN AR SARRERERER AR KR EATATARRERXXEET

BYTE >0D,>ea o DATA FOR AUTDO CR & LF

EVEN

CKAUTO EQU s

CHKLF CIC @LFMASK,R3

BL
AUTORT EQU 9

SAVE SUBROUTINE LINK
COPY STATUS WORD

18 AUTO CARR RET ENABLED.
IF NOT, CHECK FOR LINE FEED
COPY CARRIAGE RETURN CODE
OUTPUT CARRIAGE RETURN
RESTORE PARAMETERS IN REG
WHAT ABODUT LINE FEED?
RETURN IF NOT ENABLED
GET LINE FEED ASCII CODE
AND SEND IT

MOV R11,R9 R
MOV @STATRS,R3

CIC @CRMASBK,RS

JNE CHKLF

MOVB @CRLF,R1

BL @OUTCHR

MOV @STATRS,R3

JNE AUTORT
MOVE BCRLF+1,R1
BOUTCHR

B IRT S RETURN

PIN7AD EQU 3&

EVEN

ADDR DF SCAN MATRIX DECODER

PIN7EN EGU >@70@ TURN ON LAST DECDDER OUTPUT

L3

SETUP L1 R12,PIN7AD c LOAD CRU ADDRESS OF DECODER
LI R2,PIN7EN SELECT PIN 2 ON JOYSTICK PORT
LDCR R2,3 -«=AND SET IT TO GROUND
RT

E |
IR R R RN RN IR RN R RN R ENERENRE R ERER RN RN R EARRENT

LR NI N

BUBROUTINE TO GET AN INPUT STRING FROM BASIC

REGISTERE AFFECTED:

R@ - Z0OT
R1 - ZOT
R2 - I0T

R7 - RETURNS STRING BUFFER PDINTER
R8 - RETURNS STRING LENGTH

BRI R RN R AR EE RN AN ENERENENINEATNERRAY
GETSTR EQU %

GET STRING PARAMETER

GET FIRST(AND ONLY) PARAMETER
LOAD BUFFER PDINTER

MAX BUFFER LEN = 255

GET STRING

CLR R® D
LI Ri,1

L1 R2,STRBUF

MOVE @HFF, IR2

BLWP @STRREF

MOV R2,R7 COPY BUFFER POINTER
HOVB 3R7+,RB GET LENGTH BYTE

SRL RB,8 RIGHT ADJUST LENGTH BYTE
RT

3
IXNEREN RN RN RN RN ER RN RN RN R RN A RN EA RN RN SN RN ENENEATAER KRN RS

SAVE AND LOAD LOOPS FOR FAST RAM SAVE/LOAD

CALLED BY: BL ®@SAVEIT - SAVE FAST RAM DATA IN
EXTERNAL BUFFER

BL @RESTOR RESTORE FAST RAM DATA

FROM EXTERNAL BUFFER

REGISTER USAGE: R@,R1,RZ2

AR RSN AR AN AN RN SR AR NN AR R RN EREREREN RN ER X

SAVEIT EQU =

SET LOAD POINT IN FAST RAM
LDAD START OF CODE TO BE MOVED
JUMP AND DO BLOCK MOVE

LI R®, FASTWS E
LI R1, BSCBUF
JMP HMOVENT

]
RESTOR EQU %

MOVENT LI
HMOVLP1 MOV 3RO+, fR1+

THIS TIME BUFFER IS SOURCE
AND FAST RAM IS DESTINATION
32 BYTES TD SAVE/RESTORE
MOVE TWO BYTES DF CODE

L1 R@®, BSCBUF F
L1 R1,FABTWS
R2, 32

DECT R2 DECREMENT BLOCK LENGTH CNTR
JNE HOVLP1 IF NOT DONE, MOVE TWO BYTES
RT PASS CONTROL TO OUTPUT ROUTINE

3

EEAEE RSN E RN ER RN RN R R E RN ENEREN RN EREREREE RN ENEAERENRNEREAE

3z

z SET UP RS 232 PARAMETERS FROM BASIC

2

% THIS ROUTINE INPUTS A NUMERIC VALUE AND USES THIS

% VALUE TO SPECIFY THE RE232 PARAMETERS

3

b CALLED IN BASIC BY: CALL LINK("JSET",<num expr/var>)

L

EEEEREREREREEEENERRRR RN ERENENENSAEREREXNERERTLIERENERE

L]

HO3 BYTE 3 G ERROR CODE RETURNED FROM

3 CONVERT FLT-PT TO INTEGER
EVEN

MAXSET DATA >0800 H MAX VALUE OF SETUP INTEGER

®

JSET CLR R® 1 ZERO FOR SCALAR NUMERIC
L1 Ri,1 PICK UP FIRST AND ONLY PARAM
BLWP @NUMREF GET THE NUMERIC PARAMETER
BLWP @XMLLNK 60 TO CONSOLE ROM CODE TO...
DATA >1200 -.-CONVERT FLTPT TO INTEGER
CB @HOT,BFAC+10 CHECK FOR DVERFLOW ERROR
JEQ BADV INDICATE ERROR TO USER
C @FAC,BMAXSET 1S PARAMETER OUT OF RANGE
JHE BADV IF YES, JUMP AND INDICATE IT
MOV @FAC, BSTATRS SAVE NEW RS232 SETUP PARAMS.
RT BYE! BYE!

x

BADVAL EOU >130@ *BAD VALUE® ERROR MESSAGE

BADV EQU s

LE R R R EREE RS

LOAD BAD VALUE FPOINTER

P~ QEnRe J CALL ERROR HANDLER

BLWP BERR

EXEEEAEREARAERERATAEREAER RN SR EAER R RN RN SR RN ST AN EAENEREATAE

JOYSTICK OUTPUT (MAIN ROUTINE)
CALLED IN BASIC BY: CALL LINK(®JOUT",<str exp/str wvar>)
REGISTER USAGE

RO = VARIABLE SHIFT COUNT
R1 = DATA IN MSBYTE

IR IR SRR R R EA SRR AN A SRR SRR EA NI XXX R AR SR KX
DATA FORMAT FOR RS232 PARAMETERS
WORD: @STATRS

.
i

115-11110-9}! 8 |
H 1

=
LS

g
L5

2-15=INDEX INTO
SDFTWARE BAUD
TIMER TABLE (BAUD RATE)

B e

_ ©=7 DATA BITS
1=8 DATA BITS(IGNDORE PARITY)

2=SPACING PARITY
1=MARKING PARITY

_ 2=EVEN PARITY
I=0DD PARITY
4=NO PARITY

7
i
i
I
i
i
!
i
i
H
H

e, X
Ay e e ey e e e e T

o=1 STOP BIT
1=2 STOP BITS

@=AUTO LINE FEED ENABLED
1=AUTO LINE FEED DISABLED

@=AUTO CRLF ENABLED
1=AUTO CRLF DISABLED

i
i
H
i
i
i
i
H
i
i
i
!
I
1
1
i
1
i
i
i
1
|— UNDEFINED(SET TO IZERO)
EEERRREA AR LR AR AR EREEEREX AR EXERAXXL IR EXEIERXR LR XXX KRR
PARAMETER SETTING SUBROUTINE
CALLED BY: BL @PARSET
THIS SUBROUTINE MODIFIES THE DATA IN RILSBYTE

1. ADJUSTS FOR DATA LENGTH(7 OR 8 DATA BITS)

2. INSERTS THE CORRECT NUMBER OF STOP BITS(1 OR 2)

3. INSERTS THE START BIT

4. CALCULATES AND INSERTS THE PARITY BIT(IF SELECTED)

REGISTER USABE: Re-R4

R1 — RETURNS DATA WITH CONTROL BITS READY FOR SHIFTER

LE RN R

AR RN ER RN R B R R R IR R A RN RN A I RAEN AN AR EREREARRE

PARSET EQU s
moVY @STATRS,R3 T COPY RS232 STATUS WORD

COC @PARMK1,R3 15 PARITY DESIRED?
JEGB RETPAR RETURN IF NOT NEEDED.
COC APARMK2,R3 CHECK 1IF MNEED TO CALC PARITY
JE@ CALCPA IF 50, JUMP AND DO IT
FXDPAR MOV R3,R4 NO PARITY CALC, SO SET IT(e/1)
SRL R4,5 MOVE PARITY STATE TO LSBIT
JMP PBIT JUMP AND SET THE BIT
CALCPA EQU 3
CLR R4 U CLEAR PARITY FLAG
COC ReQTYMSK,R3 18 IT REALLY B DATA BITS?
JER CHKPAR 1F B0, JUMP AND CHECK 15T BIT
ANDI R1, >@07F MAKE SURE BTH BIT 15 IERO
CHKPAR EQU = ENTRY PDINT TO CALC PARITY
HOVB GFRBTI\S*S,MV MAKE RILSBYTE AFFECT STATUS
JOP CHKEVN PARITY SET FOR ODD, SO JUMP
INC R4 SET LSBIT FOR ODD PARITY

CHKEVN EGQU s
COC A@PARMK3,R3 w CHECK EVEN/ODD PARITY?

JER@ PBIT 1IF ODD PARITY, ITS SET UP OK

XOR a&aHeeel,R4 INVERT PARITY BIT/MAKE IT EVEN
PBIT EQU s

LI = Re,7 X DEFAULT SHIFT FOR PARITY MASK

CIC @&ATYMSK,R3 CHECK 7 OR B DATA BITS

JE@ PBIT2 JumMP IF 7 BITS

INC R@ ADJ SHIFT COUNT FOR B BITS
PBIT2 SLA R4,@ POSITION PARITY BIT

MOV @Heeel,R2 LOAD UP INITIAL MASK VALUE

SLA R2Z,0 LINE UP MASK BIT W/ PARITY BIT

SIC R2,R1 CLR OUT PARITY BIT, THEN...

XOR R4,R1 -« =MASK IN CORRECT VALUE
RETPAR EQU %

SLA Ri1,1 Y MAKE ROOM FOR START BIT

MOV R&,Re COPY NUMBER DOF BITS TO SHIFT

DEC R®

CIC AaSTPSTS,R3 IS IT ONE OR TWO STOP BITS?

JEQ SHFIT2 JUMP IF ONLY ONE STDP BIT

DEC Re 2 STOP BITS, SO ADJ SHIFT CNT
SHFITZ EQU

LI R2, >0223 z LOAD STOP BIT MASK

SLA R2,0 PUT STOP BI1TS IN PROPER PLACE

80C R2,R1 NOW SET THE STOP BIT(S) UP

RT

EERREREEEE AR SN EA R ER R EREREA AR ER XA SRR EREXEXARERER XA RLE

]

x

*

] BIT COUNT SUBROUTINE
E]

] CALLED BY: BL &BITCNT

E]

3 REGISTER USABE:
]
% RO - DESTROYED
x R& — RETURNS TOTAL NUMBER OF BITS TO SEND
]
T R& = DATA LENGTH(7 OR 8) + 1 START BIT
3 + BSTOP BITS(1 DR 2) + PARITY BITS(@ DR 1)
AR R AR R R R R A RN R R RN N SR A RN SN RN ENEIFARRENERY
%
BITCNT EQU %
MOV @STATRS,R® M\ COPY PARAMETER WORD
LI R&,% LOAD DEFAULT BIT COUNT FOR
22 1 STOP BIT,1 START BIT AND
158 NO PARITY BIT, 7 DATA BITS
COC @sTPSTS,Re BB 15 IT ONE OR TWO STOP BITS?
JNE BITS10 JuMP IF ONE STOP BIT
INC R& MAKE BIT COUNT=11
BITS1e EQU =
COC @PARMK1,R0 (€ CHECK FOR PARITY
JE@ BITS11 JuMP IF NO PARITY SET
INC Ré ADJUST BIT CNT TO INCL PARITY
BITS11 EGU %
COC @aTYMSK,Re [)[) CHECK FOR A B DATA BITS
JNE BITS12 IF DATA BITS=7, THEN JUMP
INC Ré& ADJUST BIT CNT TO INCL B DBITS
BITS12Z EQU
RT EE RETURN TO CALLER
%
B R R RN IR A TR R R R XA SRR E R AR AT RN TR EA RN KXY
4
% GET BAUD RATE FROM TABLE
E]
2 CALLED BY: BL. ®GETBD
%
* REGISTER USAGE: R®,RS
: §
* RETURNS: COARSE LOOP VALUE IN R®
1 FINE TUNING VALUE IN RI
AR ER NN R ERESER RN SNSRI ETEARERETRERETELTRERNENER IR
=z
GETBD EGU %
MOV @STATRS,RS EJF GET BAUD RATE INDEX FROM
ANDI RS, >000F TABLE AND MASK OFF UNEEDED BI1
SLA R3, 1 MAKE MASKED VALUE WORD INDEX
MOV @BACNTR(R3),R3 GET BAUD COUNTER VALUE
novV R3,Re COPY BAUD RATE DATA
SRL Re,12 ADJUST SHIFT COUNT INTO Re
ANDI R, >@FFF
RT

RIS SRR RN RN R IR X AR RN EN SRR SR ERERTATRIREEERAITR AR ENERY

t SOFTWARE BIT TIMER VALUES

AR RSN IR SR NN N RN SRR RN RN L AR R RAEN AR ERNER TR

L

BACNTR DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

USERBD EGU

ENDCNT EGU
BSS

SCANNED

RO —
Bl =
R2Z2 -
R3 -
R4 -
s -

IR R R R R R R R R R R R R RN R R RN R R

CALLED BY:

Q40964770
ax4e96+710
V40964353
284096+174
1234094+84
3X4076+40
13%40576+17
10%4276+4
254096+1

L]

$-BACNTR
32-ENDCNT

GG

110 BAUD
150 BAUD
I00 BAUD
£00 BAUD
1209 BAUD
2400 BAUD
48086 BAUD
F40@ BAUD
19200 BAUD
FIRST USER BAUD RATE (USER1)

SPACE FOR ADDITIONAL CUSTOM
USER BAUD RATES

IR R R R R AR AN RN R R AR IR AR N SR ERERER Y

SEND ONE CHARACTER

BL @SENDIT

FAST LOOP TO TRANSMIT ONE CHARACTER THRU
THE JOYSTICK PORT

IF THE RECEIVING DEVICE 1S BUSY, THE KEYBOARD 1S

APPR. EVERY 1/3 SEC FOR THE CLEAR KEY(FCTN 4),

REBISTER USABE:

WHICH IS ALSO THE BASIC

"BREAK® KEY.

1IF THE CLEAR KEY IS PRESSED, CONTROL RETURNS TO BASIC
AND NO MORE CHARACTERS ARE SENT

VARIABLE SHIFT COUNT FOR FINE TIMING CONTROL
CONTAINS DATA TO BE SHIFTED OUT

DUMMY REGISTER USED IN VARIABLE COUNT SHIFT
VALUE OF ONE BIT TIME WHICH 1S PRESERVED
DECREMENT REGISTER FOR BIT TIME COUNTER
NUNMBER OF BITS TO TRANSHIT

AR IR R RN RN A AR R AR IR RN IS RN R AR RN RN RN EEX

L]
BREKEY BYTE

EVEN
SENDIT EQU

»ez2

HH

CODE FOR 99/4 CLEAR KEY

BUSYIN L1 R2, >4000 I
BUSYLP DEC R2
JNE TESTIT
MOV BGPLWS+22,R2
LWPI GPLWS
MOVB @He®, BKUNIT
BL @>000F
LWPI FASTWS
MOV R2, @GPLWNS+22
MOV R11,R13
BL @SETUP
MOV R13,R11
CB @BRKKEY, @KCODE
JNE BUSYIN
B ABRKRET
TEBTIT TB -12

LOAD TIME BETWEEN BREAK CHECKS
COUNT DOWN ONE AT A TIME
BREAK CHECK NOT READY SO JuMP
SAVE GPL RETURN LINK

LOAD UP SYSTEM WORKSPACE
SCAN KEYBOARD ZERD

G0 TO CONSOLE ROM CODE
RETURN TD RS232 WORKSPACE
RESTORE SYSTEM RETURN ADDRESS
SAVE SUBROUTINE LINK

TURN ON DEVICE BUSY GATE
RESTORE SUBROUTINE LINK

WAS BREAK KEY PRESSED?

NO, SO0 CHECK BUSY LINE AGAIN
RETURN TO BASIC

SEE IF THE DEVICE 1S BUSY

JEG@ BUSYLP IF 50, MAYBE NEED TO CHK BREAK
NXTBIT SRC R1,1 MOV ONE BIT INTO CARRY
JOC SETONE 1F BIT IS ONE, JUMP & OUTP 1
SBZ © BIT WAS ZER®, SO SET OUTP TO ©
JMP BITDLY JUMP AND DELAY ONE BIT TIME
SETONE SBO @ SEND A "1" BIT
JNC $+2 MAKE TIMING SAME BOTH WAYS
BITDLY MOV R3,R4 GET THE BAUD DECREMENTER COUNT
BITLP DEC R4 BAUD COUNTER LOSES ONE. ..
JNE BITLP «--LOOP ABAIN IF NOT TIMED OUT
BRC R2,0 THIS ALLOWS FINE TUNING OF
* OF THE TIME WITH 2/3 US RESOL
DEC RS _'J BIT COUNTER LOSES ONE.
JNE NXTBIT IF ALL BITS NOT OUTP., RE-LDOP
RT

ENDADR EGU %

X

% HMINI MEMORY USERS SHOULD ENTER THE FOLLOWING DATA IN THE
% REF/DEF TABLE & "MEMORY AVAILABLE® POINTERS

x

AORG >7FFO
EVEN
BYTE ”J7,707,7U7,”T”,” *,” * NAHE FOR REF/DEF TABLE
DATA JOUT ADDRESS TO BRANCH ON NAME LINK
BYTE *J’,"87,7E’,”T7,” *,” * PARAMETER SET ROUTINE
DATA JSET ENTRY ADDRESS

3
AORG >701C
DATA ENDADR LL FIRST FREE ADDRESS IN MINI MEH
DATA >7FFO BOTTOM OF REF/DEF TABLE
DATA 0 NO DEFAULT ENTRY ADDRESS

DATA ©,0,0,0 DON’T RECOGNIZE MEMORY EXPANSN

END

The following object code listing has two columns. The left-
hand column has memory location addresses. Since the ad-
dresses given are all even hexadecimal numbers, they are
word boundaries, The right-hand column contains the con-
tents of that word in hexadecimal. Because EASYBUG's ad-
dressing increments by bytes, it only permits you to enter
bytes. Thus, to enter the following data using EASYBUG, first
access EASYBUG, then type M7118. Next, from the column
opposite 7118, enter the leftmost two digits; 01. Pressing
[ENTER] advances you to memory location 7119, the.second
byte of the word beginning at 7118. Now, from the column
opposite 7118, type in the rightmost two digits: 00. Press
[ENTER] again, 711A appears, and you repeat the process.
The letters at the head of each section of this listing corre-
spond to the letters on each grey section .of Listing 1. This
will allow you to compare the source code listing with the
assembled object code.

JOYTALK
LISTING 2

Addr. Cont. Addr. Cont. Addr. Cont.
A 7118 0100 725E 30C2 7282 7132
M e CERg DeB Wma di
711E 0020 p 7262 o4co F 7288 0200
7120 0010 7264 0201 728A 0201
iz OooF L 728C 8300
7124 0200 7268 0202 728E 0202
7126 0400 T6A 7152 7290 0020
7128 0100 726C DA4AO 7992 CG70
712A 0001 796E 7131 L i
712C 0700 - 7270 0420 7996 16FD
7T12E 0001 7272 604C 7208 0458
L -
G 729A 0300

B 7252 0062 7278 0988 5 5 B "
00

C FEE 5506 727A 045B 9C 0
7258 0024 E 727C 0200 | 729E 04C0
725A 0202 727E 8300 72A0 0201
725C 0700 7280 0201 72A2 0001

Addr. Cont. Addr. Cont. Addr. Cont.
72A4 0420 7342 7252 FF 73DA COEO
72A6 6044 7344 24E0 73DC 7252
72A8 0420 7346 7124 73DE 0243
72AA 801C 7348 1604 73E0 O0OF
72AC 1200 734A D060 73E2 0A13
72AE 9820 734C 732B 73E4 COE3
72B0 729A 734E 0BAD 73E6 73F2
AN
7284 1
R OER e om e o
4 T 7354 COEQ
72BA 728C 7356 7252 73F0 045B
72BC 1404 7358 20E0
72BE €820 7354 711A GG 73F2 03CA
72C0 834A 735C 1321 73F4 02Cé
72C2 7252 7356 20E0 73F6 0161
G B
7206 0200 738 G108 73FC 3028
72C8 1300 7366 0054 73FE DO11
72CA 0420 7368 100F 7400 A006
72CC 6050 7402 2001
72cE os00 U 738A O8C! WM 7412 0200
72D0 0000 736E 7120 '
7202 C80B 7370 1302 Il 7414 0202
i 7372 0241 N
7208 7262 e 741A 1617
72DA 06A0 V 7376 DOAO 741C GCOAO
72DC 727C 7378 8303 741E B3F6
72DE C807 737A 1CO1 7420 02EQ
g sk e g S
72E4 8310 W 737E 20E0 7426 7130
72E6 02E0 7380 711E 7428 8374
72E8 8300 7382 1302 742A 0BAD
72EA 0BAO 7384 2920 742C 000E
72EC 73B8 7388 712E ;:gg gggg
72EE 0BAQ T 180 80
72F0 7256
738A 0007 7434 83F6
72F2 D077 738C 24E0 7436 C34B
72F4 0808 738E 7120 7438 0BAO
72F6 1103 7300 1301 743A 7256
72F8 0BAD 7392 0580 743C C2CD
72FA 7316 7394 0AD4 743E 9820
72FC 10FA 7396 COAD 7440 7412
79FE 06AQ 0 o e B
7302 02E0 4 7448 7302
7304 7152 744A 1FF4
7308 06A0 Y ;gﬁg ?3?)(1)(1; 744C 13E5
7308 7286 “ih¢ taod 744E OB11
730A C2E0 7308 24E0 7450 1802
730C 7254 73A8 7118 7452 1E00
pEoome AR om0 R i
7312 837C 73AC 0600 7458 1700
7314 0458 Z 73AE 0202 745A C103
7380 0003 745C 0604
7316 C288B 7382 0A02 745E 16FE
;212 gg% 7384 E042 7460 0BO2
1
731C 7354 7386 0458 JJ 7462 0605
AA 7388 C020 464 1GF4
me o 73BA 7252 485 Oao8
73BC 0206
7322 C146 KK 7FF0 4A4F
7324 0BAQ FABE ol 7FF2 5554
7326 7414 BB 73C0 2020 7FF4 2020
7328 045A 73C2 7118 7FF6 72CE
7364 1601 7FF8 4A53
732A ODOA 736 0586 ;E[::é ;ggg
732C C24B ¢ 73c8 2020 7FFE 729E
732E COEO 73CA 711A
7330 7252 7360 1301 LL 701C 7488
e BGe mEenb
7336 1606 DD 73D0 2020 7022 0000
7338 D060 73D2 7120 7024 0000
733A 732A 7304 1601 7026 0000
733C 06A0D 73D6 0586 7028 0000
733E 7316 m
7340 COEO EE 73D8 045B

	joy_page1.jpg
	joy_page2.jpg
	joy_page3.jpg
	joy_page4.jpg
	joy_page5.jpg
	joy_page6.jpg
	joy_page7.jpg
	joy_page8.jpg

